Transcriptional responses indicate attenuated oxidative stress in the springtail Folsomia candida exposed to mixtures of cadmium and phenanthrene.
نویسندگان
چکیده
Since the 'omics revolution', the assessment of toxic chemical mixtures has incorporated approaches where phenotypic endpoints are connected to a mechanistic understanding of toxicity. In this study we determined the effect of binary mixtures of cadmium and phenanthrene on the reproduction of Folsomia candida and investigated the cellular mechanisms underlying this response. Mixture toxicity modeling showed an antagonistic deviation from concentration addition for reproduction effects of the mixtures. Subsequent transcriptional response analysis was done using five mixtures at the modeled 50 % effect level for reproduction. The transcription profiles of 86 high throughput RT-qPCR assays were studied by means of partial least squares regression analysis. The first and second principal components (PCs) were correlated with global responses to cadmium and phenanthrene, while correlations with the mixture treatments were found in the higher PCs. Specifically associated with the mixture treatments were a biotransformation phase II gene, four mitochondrial related genes and a gene involved in the biosynthesis of antioxidant selenoproteins. Membrane integrity related gene inductions were correlated with the single phenanthrene treatment but not with the mixtures. Immune and inflammatory response assays did not correlate with any of the mixtures. These results suggest moderated oxidative stress, a higher mitochondrial maintenance and less compromised membrane function in the mixture exposed samples compared to the separate cadmium or phenanthrene exposures. The antagonism found for inhibition of reproduction may partially originate from these differences. Mechanistic studies on mixture toxicity can ultimately aid risk assessment by defining relevant toxicity pathways in organisms exposed to real-world mixture exposures present in the field.
منابع مشابه
I-33: Oxidative Stress Responses in EarlyPregnancy
Background: Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Materials and Methods: Laboratory-based analysis of endometrial biopsies and primary endometrial cultures. Results: Using primary cultures, we show that modest levels of reactiv...
متن کاملGene expression analysis reveals a gene set discriminatory to different metals in soil.
Environmental pollution is a worldwide problem, and metals are the largest group of contaminants in soil. Microarray toxicogenomic studies with ecologically relevant organisms, such as springtails, supplement traditional ecotoxicological research but are presently rather descriptive. Classifier analysis, a more analytical application of the microarray technique, is able to predict biological cl...
متن کامل3. Reference genes for RT-qPCR tested under various stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola)
Genomic studies measuring transcriptional responses to changing environments and stress currently make their way into the field of evolutionary ecology and ecotoxicology. To investigate a small to medium number of genes or to confirm large scale microarray studies, Quantitative Reverse Transcriptase PCR (RT-qPCR) can achieve high accuracy of quantification when key standards, such as normalizat...
متن کاملChronic exposure to chlorpyrifos reveals two modes of action in the springtail Folsomia candida.
Organophosphates are popular insecticides, but relatively little is known about their chronic effects on ecologically relevant endpoints. In this paper, we examine a life-cycle experiment with the springtail Folsomia candida, exposed via food to chlorpyrifos (CPF). The results for all endpoints (survival, growth and reproduction) were analyzed using the DEBtox model. Growth was unaffected by CP...
متن کاملGene expression microarray analysis of heat stress in the soil invertebrate Folsomia candida.
Sudden temperature changes in soil can induce stress in soil-dwelling invertebrates. Hyperthermic conditions have an impact on gene expression as one of the first steps. We use a transcriptomics approach using microarrays to identify expression changes in response to heat in the springtail Folsomia candida. An elevation of temperature (Delta 10 degrees C) altered the expression of 142 genes (11...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecotoxicology
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2013